The 11th REAAA BUSINESS FORUM SEPTEMBER 4th, 2024 (WED) / BITEC, BANGKOK

Application of Machine Vision-Based Road Surface Maintenance Technology for Coping with Climate Change in Korea

Dr. KIM, In-bae

Principal Researcher / Korea Expressway Corporation Research Institute

Road Damages due to Abnormal Temperatures in Korea

Climate and Temperature Characteristics of Korea

 50 year Frequency Maximum Atmospheric Temperature Range by Region (33.1°C ~ 39.7°C; 92°F ~ 103 °F)

ガロなどの対きしないでは、「「」」であった。「」」であったのです。

42

Q 40

) (년 38 36

34

32

30

28

Ullungdo -12.6

Korean Highway Bridge Technical Standard (1972 ~ Present)

Climate	Steel bridge (Steel plates)	Steel composite bridge (Steel girder & concrete slab)	Concrete bridge
Common area	-10 °C ~ 50 °C	-10 ℃ ~ 40 ℃	-5 ℃ ~ 35 ℃
Cold area	-30 °C ~ 50 °C	-20 °C ~ 40 °C	-15 ℃ ~ 35 ℃

Road Damages due to Abnormal Temperatures in Korea

Case of Blow-ups in Concrete Pavements (2018)

Ы

Road Damages due to Abnormal Temperatures in Korea

Correlation between Climate Change

and Road Damages

H.W(Heatwave) : A condition where the daily maximum temperature remains at or above 33° C (91 °F) for two consecutive days or more

Year	'11	'12	'13	'14	'15	'16	'17	'18	'19	'20	'21	'22	Average ('11~'22)	Annual Average ('81~'10)
T _{average} (°C)	12.4	12.3	12.9	13.1	13.4	13.6	13.1	13.0	13.3	13.0	13.3	12.9	13.0 (0.6°C↑)	12.4
T _{highest} (°C)	36.7	38.7	39.2	37.9	38.7	39.6	39.7	41.0	37.6	37.8	38.3	37.9	38.6 (1.1°C↑)	37.5
H.W (Days)	14	15	18	6	10	22	14	32	14	8	12	11	14.7 (45% ↑)	9.8
H.W _{Cont} (Days)	6	21	20	7	17	34	9	37	13	11	19	13	-	-

°C

100-100

100

Day

90

80

70

60

50

40

20

10

80

Development System(NEXUS) and Main Function Configurations

- Expansion Joint Device Analysis Process for Al Method
 - **1. Step 1: Finding Device Location (Classification)**

Objective: Accurate image detection of NEXUS system survey results.

Approach: Classification techniques to identify the device location.

2. Step 2: Finding Minimum Pixels (Segmentation)

Objective: Determine the device openings value.

Approach: Segmentation methods to extract relevant pixels.

Ы

Step 1. Finding Device Location (Classification)

Objective: Accurate image detection of NEXUS system survey results.

Approach: Classification techniques to identify the device location.

Step 2. Finding Minimum Pixels (Segmentation)

Objective: Determine the device openings value.

Approach: Segmentation methods to extract relevant pixels.

Example of Processing Results

(a) Original image

(c) Extraction of opening area image

(d) Final measurement result image

10

Ы

- Saving Inspection Time by 90%
 1 hr → 5 min / each bridge (Average)
- Annual Cost-saving Effect: Approximately 30% (\$3.3 million) on a budget of \$11 million (USD) for KEC's expansion joints annual replacement expenses
- Database Management: It is possible to track and monitor variations in joint-gap
- Preventive Maintenance through Bridge Response Monitoring

Thank You

II. Review of Temperature Design Standards by Country

 Experimental studies by type are needed to establish the effective temperature of bridges suitable for the climate of Korea

ex forestare

Ы

Conclusion

ю 14 ы