

Exploiting Artificial Intelligence (AI) In Singapore Land Transport Authority

Potential and Opportunities for AI in LTA

Recent advancement in AI/Gen AI provides tremendous opportunity for LTA to improve operations, decision making, service delivery, and productivity, while mindful of the potential pitfalls and risks

Automating road defect detection through AI

RESTRICTED

TARGET VALUE : Reduce 30% labour required for road and commuter infrastructure inspection; reduce costs

APPROACH : Replace human inspection with drive-thru camera detection (video analytics) of road and commuter infrastructure defects

- **Streamlined workflow** where defects and GPS locations are automatically collated to report
- Human-in-the-loop to review report before authorizing rectification works
- Mitigates post-COVID 19 labour crunch

STATUS / LEARNING POINTS : Project in progress. Some defects not picked up **(~85% accuracy)**; Continue to improve model accuracy and reduce reliance on **human judgement**

Easier viaduct bearing inspection through AI

RESTRICTED

TARGET VALUE : Reduce 50% manpower and 75% inspection time, while improving safety

APPROACH : **Use drones to capture** viaduct bearing images and convert to 3D models where **video analytics extracts measurement features** for deformation measurement

- No need to set up cherry picker and for workers to work-from-height
- 3D models provide more **consistent measurement** relative to human judgement

STATUS / LEARNING POINTS : Project Completed. Adoption by Public Transport Operators (PTOs) in progress.

Before

<u>After</u>

Safer construction sites through AI

RESTRICTED

TARGET VALUE : Greater oversight of construction site safety with fewer manpower resources

APPROACH : Combination of cameras and **video analytics to detect high-risk activities** at work sites.

- Examples include pedestrian intrusion into vehicular access, safe working at height, safe working near machinery and facial recognition for authorised and competent workforce
- Triggers real-time alerts to persons-in-charge

STATUS / LEARNING POINTS : Project in progress. Services currently provided by **different contractors, with varying performance**. Potential to develop internal capabilities and models for consistent performance.

More efficient traffic monitoring through AI

TARGET VALUE : More efficient way of detecting adverse traffic conditions for prompt mitigation.

APPROACH : Using video analytics on the North-South Corridor project's centralised monitoring platform (where all the site CCTVs are centralised) to not only detect safety non compliances, but also traffic anomalies.

- Examples includes **traffic congestion** and **illegal parking**.
- System sends out **timely alerts** to telegram group.
- **Prompt interventions** can be carried out by individual teams.

STATUS / LEARNING POINTS : Project in progress. Accurate detection requires the setting of **right parameters** based on **site conditions**. Users to **maintain** the **preset vantage** for the CCTVs. **Any changes** to the CCTV view requires resetting of the region of interest (ROI).

Ensuring lane closure compliance through AI

TARGET VALUE : To reduce occurrence of traffic congestion caused by late opening of lane closure

APPROACH : Using video analytics on the North-South Corridor project's centralised monitoring platform to detect late lane closure opening.

- System sends out alerts to the telegram group when the lane is not opened beyond the stipulated time.
- The **threshold time** set can be adjusted according to the type of work.
- **Early interventions** can then be carried out by the individual teams.

STATUS / LEARNING POINTS : Trial in progress. Accurate detection requires the **preset vantage for the CCTVs to be maintained. More model training** is required to **improve detection accuracy**.

Effective way to detect jaywalking through AI

TARGET VALUE : To detect and reduce the occurrence of jaywalking.

APPROACH : Using video analytics on the North-South Corridor project's centralised monitoring platform to detect jaywalking on site.

- System sends out alerts to telegram group when jaywalking is detected.
- Based on the alerts, personnel that jaywalked can be **identified** and penalised. This will serve as a deterrence to others as well.

STATUS / LEARNING POINTS : Trial in progress. More model training is required to **improve detection accuracy** as motorcyclists are sometimes wrongly identified as jaywalkers.

Domain: Service Delivery

Enhanced measures for traffic diversion through AI

RESTRICTED

TARGET VALUE : To provide **real-time travel information** for **motorists to make informed decision on the travel routes in advance**.

APPROACH : Smart VMS (solar powered) will display travel time to the pre-determined destination via the major arterials such as Thomson Road and Marymount Road, as well as alternative routes.

- Using third party data (travel time) to determine estimated travel time through different travel routes.
- Currently 7 nos of Smart VMS are deployed on site.

STATUS / LEARNING POINTS : Project in progress. Correct geo-referencing of the routes is essential to ensure that the **travel data is accurate**.

Domain: Enforcement

Active Mobility Enforcement through AI

RESTRICTED

TARGET VALUE : Improve violation detection by up to 300%, able to carry out constant enforcement across larger geographical area with fewer manpower resources

APPROACH : Mobile CCTVs with **video analytics to** identify active mobility (AM) violations at potential hotspots

- Automatically triggers violation to persons-incharge for further investigation
- Expands LTA's ability to cover large numbers of potential hotspots

Mobile CCTVs

Example: Violation of using Power-Assisted Bike on footpath

10

STATUS / LEARNING POINTS : Project in progress, More data / training is required to detect AM device type and device number plates

Traffic Prediction & Simulation through AI

RESTRICTED

TARGET VALUE : Better Traffic and Incident Management

APPROACH: Harness the potential of Digital Twin with traffic prediction and simulation capabilities to:

- Use machine learning to **predict traffic congestion**
- Run concurrent traffic simulations on multiple what-if scenarios for optimal traffic response plan
- Improve OCC workflows with data-driven decision support

STATUS / LEARNING POINTS: Project scoping in progress. Leveraging on road pricing and other Intelligent Transport System (ITS) data, the traffic model can be continually refined to maintain its relevance and enhance its prediction quality.

11

Desired Outcomes

Thank You

